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ABSTRACT

Websites are an increasingly important part of how people seek out political information.
Many political scientists believe that the web provides diverse new sources of information.
However, some research suggests that the structure of the web promotes a winners-take-
all pattern wherein a few sites on any topic receive the bulk of the attention. By building
software to analyze the links between webpages on a topic, I am able to demonstrate the
latter pattern on four political issues. When analyzing the top sites on each issue, I find that
traditional sources of information are outnumbered by web-only sources with formats that
allow user participation.
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CHAPTER 1

INTRODUCTION

Political scientists have always been concerned with the characteristics of the sources of
information within a democracy [2] [3]. Information plays a key role in a democracy for
several reasons. The information citizens receive plays a role in the formation of their political
preferences. Access to information determines a citizen’s ability to monitor their government.
Information about the political agenda is necessary for citizen participation. [9] Robert Dahl
identifies information as a source of political advantage that can be more important than even
wealth. The inequalities resulting from the uneven distribution of information, in his view,
are a serious danger to democracy. The wider the spread of information, the less advantage
elites have over the public. [13]

As sources of information expanded during our historical development, from the intro-
duction of the pamphlet and newspaper, then radio and television, the critical focus on
new sources has shifted from availability to quality to bias. Thus, the nature of these news
sources, be they early pamphlets, partisan weeklies, the penny press, radio, television, and
now the Internet, creates the particular concerns or hopes relating to the nature of informa-
tion within our representative democracy. The concerns over homogeneity and bias found
when our primary sources of news information, network news shows, dominated in the 1970s
and 1980s, shifted to new hope for an egalitarian amalgamation of diverse news sources with
the advent of the Internet in the 1990s. But that hope has found a counterpart in the critical
view that the news to be found on the Internet, while generally more diverse, is dominated
by a handful of popular sources. And this is of concern, as increasingly the populace is

turning to the Internet for its political information. In prior times, as well, the primary role



of arbiter of information was performed by journalists performing their task of scrutinizing
the government’s performance providing news on the events of the day as well as analysis
of complex policy reforms. Today, that role is no longer held by journalists alone but by
an array of news/information sources including interest groups, bloggers, wiki editors, and
more.

The Internet, particularly the world wide web, is an increasingly important part of how
people seek out political information and an important source of that information. According
to results from a 2004 Pew/Michigan survey, 53% of US Internet users had gotten news about
the Iraq war online, 35% of Internet users had gotten news about gay marriage online, and
26% of Internet users had gotten news about the debate over free trade online [I7]. In a 2008
survey, 55% of the respondents went online to get information about the 2008 elections. In
the same survey, 24% percent of Internet users reported getting news from issue-oriented
websites. [34] Some of the most recent Pew surveys (April and December of 2009) suggest
that 74% of American adults use the Internet. Of that 74%, 72% get their news online,
while 60 % look online for news and information about politics or upcoming campaigns. The
expectation is that these numbers will continue to grow. There is no doubt that the Internet
is now a significant source of news and political information for a large number of Americans.
i

Early theorists of the Internet championed it as an egalitarian medium; since the cost of
producing a website is much lower than traditional publishing, and the potential reach of
that website is much greater, the Internet was expected to expand the political voice and
knowledge of the average citizen. As Howard Dean’s campaign manager Joe Trippi effused,
“The Internet is the most democratizing innovation we've ever seen, more so even than the
printing press.” [37]

The ability of traditional media to be the powerful agenda-setters of the past has been
called into question with the arrival of this supposed diverse and interactive new medium

[21] [36] [31]. Indeed, with such a diversity of information sources available to the public, the



cyberoptimists also suggested the possibility of greater opportunities for citizen deliberation
and participation [§] [11]. Schwartz (1996) and Rheingold (1993; 2002) argued that online
communities and social networks could only augment the public sphere, and the expectation
of greater civic engagement due to the free flow of ideas and diverse opinions would be
enhanced by the Internet [7] [20].

Others have taken a more pessimistic view of the same phenomenon. Sunstein and
Putnam, for example, fear that with public attention diffused across millions of websites
political discourse will become more polarized [35] [28]. This is because such a high choice
environment helps create clusters or niches of like-minded individuals. Thus, rather than
being exposed to the generalized content of the traditional mass media, people find their
sources and places on the Internet where they are “reinforcing each other’s similarities” and
“standing against people” of differing perspectives [33] [22] [25].

Another possibility, and one that is less examined, is that the Internet might not be
so egalitarian after all. That it is not simply the individual’s tendency to lessen cognitive
dissonance that drives this polarization, but rather a structural explanation, or as some
have suggested, an ecological one, drives the distribution of accessed websites. The domi-
nant sources of news information on the web are simply not that diverse (i.e. they still fall
within the general venue of mainstream political information), and more obscure and varied
news sources are simply more difficult to find. E[Thus, the primary question to be addressed
here is whether or not the Internet is really an egalitarian structure when it comes to the
most important type of information relative to a democratic nation —political news and
information. Is there a diversity of political news and information on the web that is readily
accessible to the public? If no, then why not?

Before addressing that question, however, the following chapter explores the literature

that has informed this debate on the general question of the egalitarian nature of the web,

TAn analogy might be certain sites are right there off the highway; the others require off-road
maneuvering and if you are in a hurry, or lack the skills or motivation to go off-road, you take what
you get, usually the first few of your search engines results.



and more precisely, whether political websites that are readily available to the public are

diverse in nature.



CHAPTER 2

LITERATURE REVIEW

To understand why the Internet may be less diverse in terms of readily accessible information
sources, it’s necessary to reflect on the structure of the web. The element tying one webpage
to another is the hyperlink. A hyperlink is a snippet of text or an image in a webpage that,
when clicked by a computer user, causes their computer to load a new webpage. A hyperlink
can be though of as having a source, the webpage that it is a part of, and a destination,
the webpage it causes to be loaded when it is clicked. Across the web, a relatively small
number of websites are the destination of the vast majority of hyperlinks. The distribution
of hyperlinks to a particular site follows the highly skewed power law scale [6]. Figure
visually demonstrates a power law.

The distribution of the number of people visiting a particular site, commonly known
as the “traffic” of a site, also follows a power law [5] [I6]. To understand why site traffic
should be related to hyperlink structure, it’s necessary to think about the ways Internet
users discover websites. If a user already knows about a website, they can visit it directly.
If they don’t, they can discover it via a hyperlink from a site they already know about or
by using a search engine like Google. Both of these methods favor the discovery of highly
linked-to sites.

Understanding how the following of hyperlinks favors highly linked-to sites is straight-
forward. When browsing the web, the more hyperlinks there are to a site the more likely
a user is to come across and click one of them. The role of search engines is only slightly
more complex. When using a search engine, most users only visit websites on the first page

of results. The release of search data for over 600,000 AOL users showed that 90% of clicks



Figure 2.1: A power law distribution graphed on a linear scale. The number on the Y axis
varies as a power of the X axis. The darker section represents 80% of the total items graphed.
This image is by Hay Kranen and is in the public domain.

went to the results from the first page, 74% of clicks went to the first 5 results, and 42% of
clicks went to the first result [23]. This is significant because search engines’ rating algorithms
give heavy weight to the number of hyperlinks a site receives. Although the exact algorithms
vary from search engine to search engine and are often secret, Ding et al. show that search
engine result ordering is barely distinguishable from simply ordering websites based on the
number of hyperlinks to them [I4]. Hindman found a .704 correlation between the amount
of traffic a site received and the number of hyperlinks to it. [16]

Thus, hyperlinks to a website are a good measure of its visibility, and the visibility of a site
is associated with the traffic it receives. ElHindman has dubbed this phenomena googlearchy;,
meaning “the rule of the most heavily linked”. In a world of googlearchy, the rich sites get

richer by accumulating more traffic and links at the expense of less visible sites. [16] Naming



the phenomena after a search engine is apt, since it is users’ reliance on search engines that
accelerates this phenomenon. [I]

Does the existence of googlearchy on the web as whole also apply to political content?
There is conflicting evidence in this regard. Looking purely at a set of 4,000 political weblogs
EI, Drezner and Farrell found a highly skewed pattern of links. [I5] Using techniques T will
discuss in my methods section, Hindman examined communities of websites dealing with
abortion, the death penalty, gun control, the presidency, the congress, and politics in general.
In all of these cases, a power law fit the distribution of hyperlinks with an R? greater than
.90.

However, other research on topically related websites shows a less skewed distribution.
Pennock et al go as far to describe power law scaling within a category of websites as
“the exception rather than the rule.” Their study of links between company, university,
and scientific webpages found lognormal distributions of links that differed sharply from
the winners-take-all power law. When graphed on a log scale, Pennock’s four topics differ
in shape but all appear unimodal. Instead of winners and losers, there is a strong middle
tier. [24] Chakrabarti et al examined links within hundreds of topics. Although they found
that a power law tail was usually present, there were significant differences in the bodies
of the distributions. [12] Thus, I believe the examination of more topics is necessary before
accepting the idea that the visibility of websites on political issues follows a high skewed

distribution such as a power law.

'Knowing that hyperlinks are a good proxy for traffic is extremely valuable because traffic is
difficult for researchers to measure. Gathering data on the traffic of websites requires intercepting
requests between a user’s computer and the websites they visit. Internet service providers are the
most reliable source of such information. A few large web analytics companies whose products are
used by many websites are another source. Neither set of sources is regularly willing to release
data at the scale or level of detail researchers would like. The analyses of traffic by Adamic and
Huberman and Hindman both used data an Internet service provider gathered on their customers.

2 A weblog, or blog, as defined by Drezner and Farrell is a “webpage with minimal to no external
editing, providing on-line commentary, periodically updated and presented in reverse chronological
order, with hyperlinks to other online sources.” Another feature of blogs worth noting is that they
frequently allow visitors to engage in a dialogue with the blog’s author and other visitors through
a comment section on each blog post.



Despite the Internet’s importance, outside of examinations of blogs little research has
been done on the sources of political information to which Internet users are most readily
exposed. Hindman’s research, for example, tells us that some sites are more visible than
others but does not tell us anything about the characteristics of the most visible political
websites. In contrast, I will examine characteristics of the most visible websites on an issue.
For example, among these most visible, is there diversity in terms of focus and ideological
leanings? Are they extensions of preexisting mainstream media or do they come from new
sources? Answering these questions may have a real impact on how we understand the
significance of the visibility of websites. Even if the distribution of links is highly skewed,
the Internet might be broadening the range of political information the average citizen is
exposed to if the most linked to sites convey information that is less visible in traditional
media.

Thus I set out to accomplish two things. First, I will independently reimplement the
techniques used by Hindman and use the tools I develop to test whether a highly skewed
distribution of links, the key characteristic of googlearchy, exists in a set of political topics.
Second, if I find such a distribution I will determine the sources, content, and format of the
most visible sites. In the next section, I will discuss the data and methodology required to
both test the googlearchy theory and further examine the nature and implications of this

distribution in greater depth should I confirm its existence for these political topics.



CHAPTER 3

METHODS

To gather the data necessary to answer these questions, I borrowed two techniques from
computer science. The first is web crawling. Web crawling simply refers to starting at a
webpage, observing all the hyperlinks it has to other webpages, visiting those other webpages,
observing their hyperlinks, visiting them, and continuing this process an arbitrary number
of times. A computer program that does this is called a web crawler. The second technique is
automated text classification. It is not feasible for humans to classify the millions of webpages
involved in a research project like this, but a variety of reliable statistical techniques have
been developed that make it possible for computer software to conduct the analysis.

First, I decided upon a set of issues to examine. Hindman examined three issues: abortion,
gun control, and the death penalty. I reexamine one of his issues, gun control, but also focus
on gay marriage, global warming, and free trade. Including one of Hindman’s issues allows
me to verify his results. Including new issues allows me to see if his results were unique to
the issues he studied. All four of the issues I examine are politically salient H

Second, I built a list of “seed” webpages for each issue. These webpages are important
for two reasons. First, they define the starting points for the web crawler. Second, they are
used to train the text classification system to recognize websites about an issue. In order to
choose my seed pages, I developed a program that searched the Google, Yahoo, and MSN
search engines for my four topics. For each topic, the program conducted the search on each

search engine and collected the web addresses of the first 200 results from each engine. Next,

In a LexisNexis search of Associated Press stories from 2009, gay marriage appeared in 2716
stories. global warming appeared in more than 3000 stories, gun control appeared in 1793 stories,
and free trade appeared in 1133. LexisNexis will not return more than 3000 results.
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it merged the results from the three search engines and saved the results in a file. Finally, it
fetched the contents of each webpage that was returned in the search results and saved it in
a file. Thus, once this program was done I had four files with web addresses to act as seeds
in the crawler, one file for each topic. I also had four folders, each one with the contents of
hundreds of webpages, to use for training the text classification system.

Third, I constructed a negative training set for the text classification system. This is a
set of webpages that do not belong to any of my four categories. To choose a large set of
webpages with known topics, I turned to the Open Directory Project. The Open Directory
Project is a human-edited directory of the web. Webpages are assigned to categories, such as
Arts:Television:Programs:Talk Shows or Society:Issues:Poverty:Hunger. I developed a pro-
gram that took 600 randomly selected categories, retrieved 10,000 web addresses from them,
and fetched the contents of each webpage. Once this program was done I had a file for each
page.

Fourth, I trained the text classification software to distinguish between websites that are
or are not related to an issue. The software I used was Rainbow, a part of Andrew McCallums’
Bow toolkit. E|Rainbow implements a naive Bayes classifier. ElFor each of my four issues, I
ran Rainbow in indexing mode on the files with the contents of the seed webpages and the
files with the contents of the negative training set. This produced four models that Rainbow
could use to classify other webpages. Table shows the ten words for each model that

convey the most information about whether a document is relevant to the issue.

2I chose Rainbow because it has a number of features that made it easy to use. It has built in
support for filtering out the markup language used to format webpages. It includes a “stoplist” of
common words (such as “a” and “the”) that it will ignore. These features improve the accuracy of
the text classification models constructed by Rainbow, and their inclusion in Rainbow allowed me
to avoid preprocessing the data.

3Bayesian classifiers are often used for text classification problems due to their simplicity and
effectiveness. For example, Bayesian classifiers are commonly used to filter spam email messages.
Essentially they answer the question “Given these words observed in a document, what is the
probability that it belongs to each category?” Before a classifier can be used it has to be trained
with sample documents known to fit in each category of interest. The classifier stores the frequency
of words found in each category and uses this to determine the probabilities for documents not in
the training set.
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Table 3.1: Top Words in Models

Information Word Information Word
0.15 gay 0.16 warming
0.15 marriage 0.11 global
0.12 sex 0.10 climate
0.11 couples 0.10 greenhouse
0.09 unions 0.10 carbon
0.09 marry 0.09 dioxide
0.09 marriages 0.08 gases
0.09 gays 0.08 emissions
0.08 civil 0.08 scientists
0.07 lesbian 0.07 earth
(a) Gay Marriage (b) Global Warming

Information Word Information Word
0.16 gun 0.12 trade
0.14 guns 0.07 agreements
0.12 firearms 0.07 tariffs
0.11 control 0.06 agreement
0.10 amendment 0.06 nafta
0.09 laws 0.06 free
0.09 weapons 0.06 economic
0.08 ban 0.06 economy
0.08 crime 0.06 countries
0.08 rifle 0.06 foreign

(¢) Gun Control (d) Free Trade

Finally, I developed a web crawler and ran it for each issue. The web crawler started at
each of the seed webpages, visited the webpages linked to by the seed webpages, and then
visited all the webpages linked to by those pages. [[The crawler ran the text of each webpage
it visited through the text classification software to determine if it was related to the issue.
If the webpage was unrelated, no hyperlinks from it were followed. For each webpage visited

the crawler recorded the text classification score and the webpages to which it linked.

4Limiting the websites visited to those that are within 2 hyperlinks of the seeds was necessary
due to computational constraints. Increasing the depth of a single crawl to 3 would have meant
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visiting tens of millions of pages and processing hundreds of gigabytes of data. This would require
months of computer time and significantly increase the costs of the research.



CHAPTER 4

RESuULTS

4.1 CRrRAWL OVERVIEW

After performing the four crawls, I filtered out all data from websites that did not have
a single relevant webpage. Table demonstrates the scope of the four crawls after that
filtering. The number of pages crawled ranged from 600,000 to 1,500,000. For each crawl,
around one-sixth of the pages linked to were not found. This could be due to an error in the
link (such as a misspelling), an error on the website (such as being overloaded), or a change
in the site’s content (perhaps the page was deleted). Also, a small number of pages were
downloaded but had errors that prevented the crawler or classifier from processing them
successfully. In both of these cases the crawler retried two times in case the errors were
intermittent. The number of pages crawled is inflated compared to the amount of unique
content crawled. While each page is defined by a unique web address, sometimes more than

one web address can point to the same content. [1]

Table 4.1: Number of Pages Crawled
Topic Crawled | Missing | Error
Gay Marriage | 1,499,429 | 345,305 | 2,238
Global Warming | 605,222 | 97,568 | 2,596
Gun Control 1,175,237 | 243,916 | 3,907
Free Trade 665,959 | 107,496 | 803

IFor example, a blog post like ablog. com/post . php might also be linked to as/ablog.com/post .
php7utm_source=feedburner. This suggests that ignoring the parameters after the question mark
might be a way to prevent duplicate content. However, this is not the case since many websites use
such parameters to dynamically choose what content to display. For example, |ablog.com/post.
php?id=5 and [ablog.com/post.php?7id=4| could be different content.

13


ablog.com/post.php
ablog.com/post.php?utm_source=feedburner
ablog.com/post.php?utm_source=feedburner
ablog.com/post.php?id=5
ablog.com/post.php?id=5
ablog.com/post.php?id=4
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Table shows the aggregate results of the classification of the pages for each topic. For
gay marriage, three-fourths of the pages successfully crawled were classified as relevant. For

the other topics, two-thirds of the pages successfully crawled were classified as relevant.

Table 4.2: Page Classifications

Topic Classified | Relevant | Irrelevant
Gay Marriage | 1,151,886 | 871,448 | 280,438
Global Warming | 505,058 | 336,000 169,058
Gun Control 927,414 | 617,876 309,538
Free Trade 557,660 | 380,428 177,232

Although each crawl encompassed hundreds of thousands of webpages, these webpages
were a part of a much smaller number of websites. [[The number of sites for each topic is
shown in Table [4.3] This table also shows the number of links found between webpages.
Throughout this analysis, I will make a distinction between all links and external links.
The descriptor “all links” includes any links from one webpage to another. The descriptor
“external links” only includes links from a webpage to a webpage on another website. This
is distinct from “internal links”, which are links from a webpage to a webpage on the same
website. For example, a link from foo.com/news to bar.com/views would be counted both
in all links and external links. However, a link from foo.com/news to foo.com/archive
would be counted in all links but not in external links. The reason for analyzing these two
categories of links separately is that the inclusion of internal links might not accurately
reflect the visibility of a website. For example, a website could be linked to only once by
another website, but it could link to its own pages thousands of times. Table shows that

the number of external links is much smaller than the number of internal links.

2The count of websites is inflated somewhat, since every unique domain is treated as a site.
For instance, blog.foo.com and forum.foo.com would be treated as two different websites, even
though they would probably be under the control of the same individual or group. Collapsing the
concept of a site down to the base domain would solve this problem, but it would introduce an
undercount problem. Many blog hosting services use different subdomains for different customers,
such as jane.livejournal.com or joe.livejournal.com. It would be undesirable to treat these as the
same website.


foo.com/news
bar.com/views
foo.com/news
foo.com/archive

Table 4.3: Number of Sites and Links

Topic Sites All Links | External Links
Gay Marriage | 27,612 | 357,359,575 69,948,869
Global Warming | 10,692 | 95,840,731 16,568,170
Gun Control | 24,356 | 197,240,465 45,801,846
Free Trade 9,038 | 83,118,541 11,033,386

4.2 A LooOK AT LINKS

Tables and show the number of links to the top 1, and 50 most linked-to sites for
each category of links. In all cases, they reveal a highly-skewed distribution of links. Out of

thousands of sites, the top 10 average almost 50% of all links and 25% of external links.

Table 4.4: Percentage of All Links to Top Sites

Links to | Links to | Links to

Topic Top 1 Top 10 | Top 50
Gay Marriage 40% 55% 69%
Global Warming | 20% 45% 1%
Gun Control 10% 40% 58%
Free Trade 21% 50% 73%

Table 4.5: Percentage of External Links to Top Sites

Links to | Links to | Links to

Topic Top 1 Top 10 | Top 50
Gay Marriage 11% 24% 43%
Global Warming 8% 25% 45%
Gun Control 7% 22% 39%
Free Trade 10% 27% 49%

Is this highly-skewed distribution a power law, as previous research suggests? I perform
both visual and statistical tests. First, Figure [4.1] show the links to the top 50 sites on a
linear scale. Because of the long tail, graphing all sites would hide the gradual change in the

top sites. The shape is similar to the sample graph in Figure [2.1}
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Figure 4.1: Linear Graphs of Top 50 Sites
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The other tests rely on a useful property of power law distributions - when graphed with
both axes on a log scale the data forms a straight line. Table shows the result of an
ordinary least squares regression with the log of the number of links to a website as the
dependent variable and the log of the number of websites with as many hyperlinks as that
website as the independent variable. For all topics, using either category of links, the model’s
fit is extremely good: the lowest R? is .95. However, this is not sufficient to prove that there
is a linear relationship on a log-loq scale. Q-Q plots of the residuals against the normal

distribution in Figure shows a strongly nonlinear pattern.

Table 4.6: Regression Fit

All Links | External Links
Topic R? R?
Gay Marriage 976 975
Global Warming 978 .950
Gun Control 975 .960
Free Trade 978 958

Figure |4.3| shows graphs of the data on a log-log scale for each topic. All links are in blue,
and external links only are in green. The graphs again show the highly skewed distribution
of links, but they also do not support a power law distribution across the entire spectrum of

sites. This is particularly clear at the tail of least linked-to sites.

4.3 A LoOK AT THE ToOP SITES

If the distribution of links makes some sites much more visible than others, an important
question becomes what kind of sites are most visible. I examined the top 10 sites by all links
in each category. EITableS through show the top 10 sites for each topic. The first 4
columns show data determined by the crawling software-the site names, the the number of
links to them, the number of pages from them that were crawled, and the fraction of their

pages that were relevant to the topic. The 5th column shows the focus of the site, determined
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by viewing the content on the front page and by visiting the site’s “About” page if it had
one. The 6th column shows whether the site was either a blog or a wiki.

Surprisingly, there are a very small number of issue-specific sites in the top 10 for each
category. For gay marriage, there is not a single site in the top 10 devoted to that issue.
Expanding the scope to all gay rights issues yields only one site, pinknews.co.uk, that is
exclusively devoted to covering them. On global warming, joannenova.com.au is the only site
primarily focused on the topic. For gun control two sites, saysuncle.com and guncite.com,
focus on it. Similar to gay marriage, free trade does not have any sites devoted to it in the
top 10. The closest are knowmore.org, which compiles critical reports on corporations, and
globalenvision.org, which reports on the effects of globalization on poverty. Instead of topic-
specific sites, more general news sites are the dominant category. 10 of the 40 sites focus on
political news, another 8 focus on other kinds of news.

The sources of the sites are interesting in who is absent. Although news sites are almost
half of the total, online.wsj.com is the only one that is an online outgrowth of a print
publication. Interest groups focused on the issues are completely absent from the lists. Only
a single think tank, the Mises Institute, is represented.

Although blogs are a relatively new phenomenon on the web, they make a strong showing
among the top sites. 20 of the 40 sites are completely in the blog format or feature a blog
section prominently on their front page. An even more recent phenomenon is the wiki, a
format where the entire site’s structure and constant is collaboratively generated by its users.
3 of the 40 sites are wikis. Although not strictly a wiki, answers.com operates similarly. Its
users can post questions, which are then viewable and answerable by other users. It appears

as the top site in 3 of the 4 categories.

3 An analysis using only external links was also conducted. Even fewer topical sites were included,
and the top 10 sites had a lower relevance.



Table 4.7: Top Sites for Gay Marriage
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Site All Links | Pages | Relevance Focus Blog/Wiki
www.americablog.com | 141287627 | 75469 0.81 Political News Blog
graphjam.com 10064920 | 9691 0.99 Humor Blog
www.fivethirtyeight.com | 8894861 | 12670 0.95 Political News Blog
WWW.amazon.com 8745562 | 69776 0.39 Shopping No
www.blogger.com 7974559 | 90863 0.54 Various Blog
www.huffingtonpost.com | 7386997 | 23537 0.84 Political News Blog
current.com 4115656 | 9776 0.91 General News No
www.pinknews.co.uk 3637509 | 5873 0.98 Gay News No
slate.com 2811210 | 14633 0.98 General News No
donklephant.com 2770320 7701 0.76 Political News Blog
Table 4.8: Top Sites for Global Warming
Site All Links | Pages | Relevance Focus Blog/Wiki
WWW.answers.com 51594 | 18470009 0.68 Q&A No
www.dailytech.com 8189 7175008 0.86 Technology News Blog
joannenova.com.au 7953 3360679 0.86 Global Warming Blog
www.conservapedia.com 10123 3005508 0.77 Conservative Issues Wiki
www.huffingtonpost.com 11645 2811964 0.63 Political News Blog
www.wikiality.com 9619 1878093 0.94 Humor Wiki
www.sciencedaily.com 5598 1847411 0.91 Science News No
www.sourcewatch.org 11341 1826653 0.87 Liberal Issues Wiki
www.bookrags.com 9934 1659569 0.56 General Knowledge No
www.britannica.com 5815 1479964 0.68 General Knowledge No
Table 4.9: Top Sites for Gun Control
Site All Links | Pages | Relevance Focus Blog/Wiki
WWW.answers.com 38082 19210496 0.62 Q&A No
www.guncite.com 15871 14249227 1.0 Gun Rights Blog
atlasshrugs2000.typepad.com 30384 10573786 0.76 Conservative Issues Blog
www.swamppolitics.com 45610 8053263 0.85 Political News Blog
WWW.amazon.com 50331 5122581 0.33 Shopping No
rsmccain.blogspot.com 20204 4796587 0.93 Political News Blog
www.americablog.com 2318 4650048 0.85 Political News Blog
www.huffingtonpost.com 18397 4287929 0.61 Political News Blog
www.blogger.com 25863 3300900 0.02 Various Blog
www.saysuncle.com 22001 2956435 0.71 Gun Rights Blog




Table 4.10: Top Sites for Free Trade
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Site All Links | Pages | Relevance Focus Blog/Wiki
WWW.answers.com 42552 17220402 0.72 Q&A No
WWW.amazon.com 80756 11880226 0.49 Shopping No

online.wsj.com 7341 2558830 0.93 General News No
www.huffingtonpost.com 7379 1739235 0.67 Political News Blog
www.knowmore.org 6311 1657288 1.0 Corporations No
WWW.newsvine.com 11626 1626273 0.66 General News No
www.britannica.com 5900 1440839 0.62 General Knowledge No
www.globalenvision.org 6707 1432712 0.81 Global Poverty Blog
www.businessinsider.com 3239 1152459 0.86 Business News No
mises.org 5957 1081100 0.45 Economics Blog




CHAPTER 5

CONCLUSION

5.1 IMPLICATIONS

The results of this research are supportive of the findings of Hindman and other researchers
who have found highly skewed distributions at work in topical communities across the world
wide web. My results were consistent across each topic and category of links: a tiny number
of the sites receive the majority of the links, and much of the decline in links appears
exponential. This winners-take-all pattern seems to be an inescapable effect of how pages
are connected on the web. No matter how numerous and diverse the set of websites about
an issue is, information seekers are funneled into a small number of websites.

For those who were hoping that the web would be a more egalitarian medium, the news
is not completely bleak. Although it is governed by googlearchy, the rulers are fresh faces.
Rather than online incarnations of print or television media, or political actors like interest
groups or parties, bloggers and web-only news companies are the dominant destinations on
the issues I examined. Combined, blogs and wikis are more than half of the top sites in each
category. Since many more users can contribute and comment on blogs and wikis compared to
traditional websites, there may be more viewpoints visible than the concentration of attention
on such a small number of sties would suggest. However, it’s important not to overstate this
claim. That these kinds of sources are highly visible does not mean that the messages being
conveyed are any different than those that would have been found by information seekers

not using the web.
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5.2 FUTURE RESEARCH

With the data the software I have developed can gather, there are many other research

questions that could be investigated.

5.2.1 ARE THE VIEWPOINTS OF THE MOST VISIBLE WEBSITES REPRESENTATIVE OF THE

ENTIRE SET OF WEBSITES ON AN ISSUE?

To answer this, the text of relevant webpages discovered by the crawler could be run through
software to determine the ideology, such as Proksch and Slapin’s Wordfish software. Wordfish
estimates political position on a single-dimension through a statistical model of word counts.
It would be interesting to compare the range of the Wordfish scores across the most visible
websites to the range across the entire set. Similar, one could divide the Wordfish scale into
bins and compare the percentage of sites in each bin for the most visible websites to the
percentage in each bin across all sites. Also, it would be interesting to determine if there is

a relationship between the Wordfish score and number of hyperlinks to a site.

5.2.2 DO THE WEBSITES ABOUT AN ISSUE CLUSTER TOGETHER BASED ON IDEOLOGY,

TYPE OF SOURCE, OR SOME OTHER FACTOR?

Research into political blogs has found that their hyperlinking patterns demonstrate
homophily, the tendency for someone to associate with people or ideas similar to them-
selves and their ideas. In a study of blog posts leading up to the 2004 presidential election,
over 90 percent of intra-blog hyperlinks were from conservative-to-conservative or liberal-to-
liberal [4]. A researcher could look for for this pattern in the websites about each issue by
analyzing the Wordfish score of websites and the websites to which they hyperlink. Also, a

researcher could look for clustering based on the type of source or other factors.
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5.3 CONCLUDING REMARKS

These and other questions can be answered by coupling the tools of the computer science
field with the substance of political science research. As the use of the Internet expands,
research and continued theory development on this and related topics will be critical to our

understanding of the web’s role and potential effect on politics.
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PROGRAM TO CONNECT TO

#!/usr/bin/python

import logging

import os

import platform

import re

import subprocess

import telnetlib

import time

class WebsterClassifier:

next_port 2000

def __init__(self, category, port=None,
self .logger = logging.getLogger(’’)
self.category = category
self.host = ’localhost’
self .uniform = uniform
if port:
self.port = port
else:
self.port = self.__class__.next_port
self. __class__.next_port 4= 1

self.startup ()

def __del__(self):

self.shutdown ()

def startup(self):

if platform.architecture () [0]

model_path
else:

model_path

[’rainbow 7,

command ’——verbosity=1",

query—server=%d” % self.port]

if self.uniform True:

command . append ( '——uniform—class —priors

’32bit 7
” /home/brian/thesis /bow_models/%s/” % self

—d,

APPENDIX A

uniform=False) :

.category

” /home/brian/thesis /bow_models_64/%s/” % self.category

»

model_path, "——score—precision=2",

)
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self .logger .debug(” Starting rainbow on port %d” % self.port)

self . process = subprocess.Popen(command, stdout=open(”%d.log” % self.port, ’w’), stderr=subprocess.
STDOUT)
self . rainbow_connection = None
while self.rainbow_connection == None:
try:
self.logger.debug(” Trying to connect to rainbow on %s” % self.port)
self .rainbow_connection = telnetlib.Telnet(self.host, self.port)
except:
if self.process.poll() != None:

raise WebsterClassifierError (”Rainbow on %s exited with %s” % (self.port, self.process.
returncode))

time.sleep (10)

def shutdown(self):

if not self.rainbow_connection == None:
self .rainbow_connection. close ()

self . logger.debug(’Shutting down rainbow’)

if hasattr(self.process, ’terminate’):
self.process.terminate ()

else:
subprocess.call ([ "kill’, "%d” % self.process.pid])

self . process.wait ()

def classify (self, document):

result = None
while result == None:
try:

self . rainbow_connection. write (document)
# control sequence to signal end of document
self .rainbow_connection. write(”\r\n.\r\n”)
result = self.rainbow_connection.read_some ()
except:
self .logger .warn(” Restarting rainbow on %s” % self.port)
self .shutdown ()

self .startup ()

pattern = re.compile(r”%s (\d+\.x\dx)” % self.category)

match = re.search(pattern, result)

try:
probability = match.group (1)
score = float (probability)
# rainbow returns really low scores in scientific notation
# the code above will mistakenly convert those into a score greater than 1
# this corrects for that
if score > 1.0:
return 0.0
else:
return score
except:

raise WebsterClassifierError (” Classifying via rainbow on %s failed. Result was %s” % (self.port,

result))

class WebsterClassifierError (Exception):



”7?” Exception

pass

raised for

errors

in communication with

classifier .

EERY
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APPENDIX B

PROGRAM TO FETCH WEBPAGES

#!/usr/bin/python
import focuser

import chardet
import logging
import optparse
import Pyro.core
import Queue
import re

import robotparser
import socket
import time

import urllib2

import urlparse

class Webster:
def __init__(self, master, classifier_queue , master_lock=None, store_text=False):

self . logger = logging.getLogger(’’)

self . master = master
self . master_lock = master_lock
self.classifier_.queue = classifier_queue

self.store_text=store_text
self .status = {'NOT_VISITED’: 0, ’INPROGRESS’: 1, ”"VISITED”: 2,
”VISIT_TERROR” : 3, ”"CLASSIFY_ERROR”: 4, "DECODEERROR”: 5}
self.cutoff = 1.0
self.delay = 15
# this should match table definition in database
self . max_url_length = 333
self.charset_pattern = re.compile(’[”\ ’]text/html; charset=(.%x?)[”\"’]’, re.IGNORECASE)
self.link_pattern = re.compile( href=["\"].x?[”\"’]’, re.IGNORECASE)
self.exclude_pattern = re.compile(’(\.css|\.ico|\.jpg|\.png|\.gif)’, re.IGNORECASE)

urllib2 .UserAgent="Mozilla /5.0 (X11; U; Linux x86-64; en—US; rv:1.9.1.6) Gecko/20100107 Fedora
/3.5.6—1.fcl2 Firefox/3.5.6°

socket .setdefaulttimeout (self.delay)

def page_error(self, url, error):

?7?” Wrapper to handle locking before submitting error”””
if self.master_lock:

self . master_lock.acquire ()
try:

self.logger .debug(” Submitting error %s for url %s” % (error, url))
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self . master.submit_error (url, error)
except Exception ,x:

self.logger.error( ’

>.join (Pyro.util.getPyroTraceback(x)) )
finally :
if self.master_lock:
self . master_lock.release ()

return True

def page_success(self, url, relevance, unique_links=None, link_count=None, html=None):
?7?” Wrapper to handle locking and soem other processing before submitting page”””
if self.master_lock:

self . master_lock.acquire ()

if self.store_text == True:

html = html.encode(’zlib’).encode( base64’)

try:
self.logger.debug(” Submitting page %s with relevance %f” % (url, relevance))
# work around difficulty of sending None type over zxzmlrpc
if relevance < self.cutoff:
if self.store_text == False:
self . master.submit_page(url, relevance)
else:

self . master.submit_page(url, relevance, html=html)

else:
if self.store_text == False:
self.master.submit_page(url, relevance, unique_links, link_count)
else:
self . master.submit_page(url, relevance, unique_links, link_count, html)

except Exception , x:

self.logger.error( ~

>.join (Pyro. util.getPyroTraceback(x)) )
finally :
if self.master_lock:

self . master_lock.release ()

return True

def crawl_page(self):
?7” Crawl a page”””
if self.master_lock:
self . master_lock.acquire ()
try:
url = self.master.get_page ()
self.logger.debug(”Got page %s” % url)
except:
self.logger.error (?”Could not communicate with dbserver”)
time.sleep (self.delay)
return False
finally :
if self.master_lock:
self . master_lock.release ()
if url == None:
self.logger.warning (” Crawler did not receive a page from master”)
time.sleep (self.delay)

return False



parsed = urlparse.urlparse(url)

url = parsed.geturl ()

try:
rp = robotparser.RobotFileParser ()
rp.set_url(’http://’ 4 parsed.netloc + ’/robots.txt’)
self.logger.debug(” Reading robots.txt”)
rp.read ()
fetchable = rp.can_fetch(urllib2.UserAgent, url)
except:
self.logger.debug(” Processing robots.txt failed”)
self.page_error (url, self.status[’VISIT_ERROR’])

return True

if not fetchable:
self.logger.debug(” Crawler is blocked by robots.txt”)
self.page_error (url, self.status[ VISIT_ERROR’])

return True

try:
self.logger.debug(’Connecting to page’)
req = urllib2.Request(url)
req.add_header (” User—Agent” , urllib2.UserAgent)
opener = urllib2.build_opener ()
input = opener.open(req)
opener.close ()

except:
self.logger.debug(” Connecting failed”)
self.page_error (url, self.status[’VISIT_ERROR’])

return True

if input.headers.type != ’text/html’:
self.logger.debug(’Page was not html’)
input.close ()
self.page_error(url, self.status[ VISIT_ERROR’])

return True

try:

self.logger .debug(” Reading html”)

raw_html = input.read ()

input.close ()

self.logger .debug(” Snippet of html is %s” % raw_html[:40])
except:

self.logger.debug(” Reading html failed”)

self.page_error(url, self.status[ VISIT_ERROR’])

return True

# avoid bad erros where python assumes page is ascii but its not

charsets_to_try = []

charset_identified = False

try:
ignore , charset_header = input.headers.getheader(’ content—type’).split(’charset=")
charsets_to_try .append(charset_header)

self.logger.debug(” Character set specified in headers is %s” % charset_header)



except:

self.logger.debug(’No character set specified in headers’)

charset_match = self.charset_pattern.search (raw_html)
if charset_match:

charset_meta = charset_match.group (1)

charsets_to_try .append(charset_meta)

self.logger.debug(” Character set specified in meta tag is %s” % charset_meta)
else:

self.logger.debug(’No character set specified in meta tag’)

for ¢ in charsets_to_try:

try:
html = raw_html.decode(c)
charset_identified = True
break

except:

self . logger .debug(” Character set %s was wrong” % c )

continue

if not charset_identified:

self.logger.debug(” Trying to detect character set on %s” % parsed.netloc)

try:
charset = chardet.detect(raw_html)[’encoding’]
self.logger.debug(”Detected character set %s” % charset)
html = raw_html.decode(charset)

except:
self.logger . .warn(” Detected character set was wrong”)
self.page_error(url, self.status|[ DECODEERROR’])

return True

# convert from wunicode to bytes for classifier , replacing characters that aren’t wvalid in ascit
try:
html_ascii = html.encode(’ascii’, ’>xmlcharrefreplace’)
except:

self . logger.warn(” Error encoding for classifier”)
self . page_error(url, self.status[ DECODEERROR’])

return True

try:
self.logger .debug(” Getting Classifier at %f” % time.clock())
classifier = self.classifier_queue.get(block=True)
self.logger .debug(’Classifying’)
probability = classifier.classify (html_ascii)

except focuser.WebsterClassifierError , e:
self.logger.warn(” Classifying page %s failed with error %s” % (url, e))
self.page_error (url, self.status [’ CLASSIFY_.ERROR’])
return True

finally :
self.logger.debug(”Putting Classifier at %f” % time.clock())

self.classifier_.queue .put(classifier)

if probability < self.cutoff:
self.logger.debug(” Probability %f not relevant” % probability)
self.page_success (url, probability)

return True



unique_links = {}
link_count = {}
self .logger .debug(’finding links’)
links = self.link_pattern.findall (html)
for href in links:
self.logger.debug(”Found link %s” % href)
# means start after href="
target = urlparse.urlparse (href[6:—1])
if self.exclude_pattern.search( target.path ):
self.logger .debug(”Link was to excluded filetype”)
continue
if target.scheme != ’’ and target.scheme != ’http’:
self .logger .debug(”Link was not http”)
continue
# Add domain name to relative links
if target.netloc == ’’:

try:

target = urlparse.urlparse( urlparse.urljoin (url, target.geturl()) )

except:
self.logger.warn(’Error processing relative link’)
continue
self.logger .debug(’Storing link’)

# limit key to mazimum length we can store in database

unique_links [target.geturl () [:self.max_url_length]] = True
count = link_count.setdefault(target.netloc, 0)
link_count [target.netloc] = count + 1

self.logger.debug(”Incremented link count to %d” % link_count [target.netloc])

self.page_success(url, probability , unique_links, link_count

return True

def crawl_pages(self, count=100):
start_time = time.time ()
for i in range (0, count):
did_crawl = self.crawl_page ()
if did-crawl == False:
return False

ppm = count / ( (time.time() — start_-time) / 60.0)

html)

self.logger.info (A thread crawled at %f pages per minute” % ppm)

return True

# for quick testing with one crawler
if __name__. == ’__main__":
LOGGING_LEVELS = {’critical’: logging.CRITICAL,
’error ’: logging .ERROR,
>warning ’: logging . WARNING,
,

info’: logging .INFO,
>debug’: logging .DEBUG}

parser = optparse.OptionParser ()

parser.add_option(’—p’, ’——page—count’, type=’int’, default=100,
parser.add-option(’—1’, ’——logging—level’, help='Logging level’)
parser.add_option(’—s’, ’——server’, type=

(options, args) = parser.parse_args ()

category = args[0]
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help="Number of pages to crawl’)

>str’, default=’localhost’, help=’Address

of WebsterDBServer’)



logging_-level = LOGGING_LEVELS. get (options.logging_level , logging .NOTSET)

logging . basicConfig(level=logging_-level)

logger = logging.getLogger(’’)

classifier_queue = Queue.Queue(1l)

classifier_queue .put( focuser. WebsterClassifier (category) )

w =

w.crawl_pages (options.page_count)

Webster (Pyro.core.getProxyForURI(”PYROLOC://%s:4242/ webster” % options.

server) ,

classifier_queue)
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APPENDIX C

PROGRAM TO START MULTIPLE CLASSIFIERS AND CRAWLERS

#!/usr/bin/python

import crawler

import focuser

import logging
import optparse
import Pyro.core
import Queue
import thread

import threading

LOGGING_LEVELS = {’critical’: logging.CRITICAL,
’error ’: logging .ERROR,
’warning ’: logging . WARNING,
’info’: logging .INFO,
debug’: logging .DEBUG}

parser = optparse.OptionParser ()

parser .add_option(’—1’, ’——logging—level’, help='Logging level’)

parser .add_option(’—t’, ’——thread—count’, type=’int’, default=1, help='Number of threads’)

parser.add_option(’—c’, ’——classifier —count’, type=’int’, default=1, help='Number of classifiers’)

parser.add-option(’—p’, ’——page—count’, type=’int’, default=100, help="Number of pages to crawl before
recreating a thread’)

parser.add-option(’—f’, ’——classifier —port’, type=’int’, default=2000, help='Port to create first
classifier on. Others will increment by 1.7)

parser.add-option(’—s’, ’——server’, type='str’, default="localhost’, help='Address of WebsterDBServer’)

(options, args) = parser.parse_args ()

logging_-level = LOGGING_LEVELS. get (options.logging_level , logging .NOTSET)
logging . basicConfig(level=logging_level)

logger = logging.getLogger (’’)

#formatter = logging. Formatter(”%(relativeCreated)d %(thread)d — %(message)s”)

#logger.setFormatter (formatter)

# yeah, classifer and focuser mean the same things

logger .info (” Thread count is %d” % options.thread_count)
logger .info (” Classifer count is %d” % options.classifier_count)

logger.info (”Focuser port is %d” % options.classifier_port)

category = args[0]
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classifier_.queue = Queue.Queue(options.classifier_count)

sem = threading.Semaphore(options.thread_count)
master_lock = threading.Semaphore()
def run():

try:

logger .debug(’Starting crawler )

c =

crawler . Webster ( Pyro.core.getProxyForURI(?PYROLOC://%s:4242/ webster” % options

classifier_.queue , master_lock=master_lock)

.server),

c.crawl_pages (options.page_count)
finally :

sem.release ()

for port in range(options.classifier_port , options.classifier_-port + options.classifier_count):
logger.info (” Starting classifier on %s” % port)

classifier_.queue .put( focuser. WebsterClassifier (category), port=port )

while True:
try:
sem . acquire ()
thread.start_new_thread ( run,() )
except:

logger . .warn('Error occured in thread’)



APPENDIX D

PROGRAM TO STORE CRAWL RESULTS IN A DATABASE

#!/usr/bin/python

import logging
import MySQLdb
import optparse
import Pyro.core
import random
import re

import sys
import time

import urlparse

class WebsterDBServer (Pyro.core.SynchronizedObjBase) :

def __init__(self host,db):
Pyro.core.SynchronizedObjBase. __init__(self)
self .logger = logging.getLogger(’’)
self.host = host

self.db = db

self .status = {’NOT_VISITED’: 0, ’IN.PROGRESS’: 1, ”"VISITED”: 2, ”VISIT_TERROR”: 3, ”CLASSIFY_ERROR” :

4, "DECODEERROR”: 5}
self.max_depth = 2
self.current_depth = 2
self.cutoff = 1.0
self.retry_limit = 3
self . retries = 0
self.id_by_hostname = {}
self.pages_in_progress = []
self.received_time = 0

self.pages_received = 0

logger .debug(’Connecting to mysql’)

self.conn = MySQLdb.connect (host=self.host, db=self.db,

utf8’)

def get_cursor(self):

try:
cursor = self.conn.cursor ()
cursor .execute ( ’SELECT 1)
return cursor

except:

self.logger.warn(’Error in mysql connection.

self.conn = MySQLdb. connect (host=self.host,
utf8’)

Retrying.’)
db=self .db,
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user=’'webster ’,

s

user=’'webster’

passwd="fuSWuw2E "’ ,

)

passwd="fuSWuw2E "’ ,

charset="

charset="
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return self.get_cursor ()

def get_page(self):
77”” Gets a page to process”””
cursor = self.get_cursor ()
# crawl must run in order by depth (or id, which should also order by depth) to get correct results
if not self.pages_in_progress:
ppm = self.pages_received / ( (time.time() — self.received_time) / 60.0)
self.logger.info (”Crawling at %f pages per minute” % ppm)
if not cursor.execute (”SELECT id, url FROM pages WHERE status = %s AND depth = %s LIMIT 1000”, (self
.status [ 'NOT_VISITED’], self.current_depth)):
# if we didnt get a page because theyve all been wvisited , retry any with errors
if self.retries < self.retry_limit:
self.retries += 1
self.logger.info (” Preparing retry %d for pages at depth %d with errors” % (self.retries, self.
current_-depth))
cursor .execute ("UPDATE pages SET status = %s WHERE status = %s and depth = %s”, (self.status][’
NOT_VISITED’], self.status[’ VISIT_TERROR’], self.current_depth))
cursor .execute ("UPDATE pages SET status = %s WHERE status = %s and depth = %s”, (self.status][’
NOT_VISITED’], self.status[ CLASSIFY_.ERROR’], self.current_depth))
return self.get_page()
# if we didn’t get a page because there are mo more at this depth, increase depth
elif self.current_.depth < self.max_depth:
self.current_depth +=1
self.logger.info (”Switching to depth %d” % self.current_depth)
# will want retries once done with this depth to
self.retries = 0
return self.get_page()
# if were at mazx depth and through with retries, log it and return nothing
else:
self.logger.warn(’No more unvisited pages in database’)
return None
pages_tuple = cursor. fetchall ()
self.logger .debug(”Got %d new pages from database” % cursor.rowcount)
self.pages_received = cursor.rowcount
self .received_-time = time.time ()
for id, url in pages_tuple:
cursor.execute ("UPDATE pages SET status = %s WHERE id = %s”, (self.status[ ' INPROGRESS’], id))
self . pages_in_progress = list (pages_tuple)
# put the pages in random order to avoid hammering a single site or having all crawlers stall on a
slow site

random. shuffle (self.pages_in_progress)

# get wurl from beginning of list , then remowve that entry from list
url = self.pages_in_progress [0][1]
self.pages_in_progress = self.pages_in_progress [1:]

return url

def get_site_id (self, hostname):
””” Return id of site, creating database entry if not present”””
cursor = self.get_cursor ()
if hostname in self.id_by_hostname:
id = self.id-by-hostname [hostname]
else:
if not cursor.execute (”SELECT id FROM sites WHERE hostname = %s”, (hostname,)):
self .logger .debug(”site %s was not in database” % hostname)

cursor.execute ("INSERT INTO sites (hostname) VALUES (%s)”, (hostname,))
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cursor.execute ("SELECT id FROM sites WHERE hostname = %s” ,

(hostname ,) )
id, = cursor.fetchone ()

self .logger .debug(”site %s has id %d” % (hostname, id))

return id

def queue_page(self, url, queue_depth):
””” Places new page in the database”””
#assert type(url) is str

#assert type(queue_depth) is int

cursor

self.get_cursor ()

parsed = urlparse.urlparse(url)

url = parsed.geturl ()
if parsed.scheme != ’http :
# this happens rarely
self.logger.debug(” Will not queue not http page %s” % url)
return False
if not cursor.execute (”"SELECT url FROM pages WHERE url = %s” ,(url,)):
try:

site_id = self.get_site_id (parsed.netloc)

except:

self .logger.warn(” Will not queue error getting site id for %s” % parsed.netloc)

return False
cursor .execute ("INSERT INTO pages (site_-id , depth,
url))

self.logger .debug(”Queued with depth %d page %s” % (queue_depth, url))

return True

url) VALUES (%s, %s, %s)”, (site-id , queue_depth,

else:

self.logger.debug(” Will not queue already in database page %s” % url)

return False

def submit_page(self, url, relevance, unique_links=None, link_count=None, html=None):
””” Updates the database with information about the page”””

#assert type(url) is str

#assert type(relevance) is float
cursor = self.get_cursor ()
cursor.execute ("SELECT id, site_-id , depth FROM pages WHERE url=%s”, (url,))
(page-id, from_id, depth) = cursor.fetchone ()

self .logger .debug(”page id %d is from %d and has depth %d” % (page-id,

from_id , depth))
cursor .execute ("UPDATE pages SET status = %s,

relevance = %s WHERE id = %s LIMIT 17, (self.status][’

VISITED’], relevance, page_-id))

self .logger .debug(”Set visited with relevance %f page id %d” % (relevance, page_id))

if relevance >= self.cutoff:
#assert type(link_-count) is dict
#assert type(unique_links) is dict

for hostname, count in link_count.iteritems():

try:
to_.id = self.get_site_id (hostname)
except:

self.logger.warn(” Will not insert links error getting site id for %s” % hostname)

continue
if not cursor.execute (”SELECT count from
)):

self.logger.debug(”%d links are first

links WHERE from_id = %s AND to_-id = %s”, (from_.id, to_id

instance from %d to %d” % (count, from.id, to-id))

cursor . execute ("INSERT INTO links (from_id, to-id, count) VALUES (%s, %s, %s)”, (from_id, to-id,

count))

else:



old_count , = cursor.fetchone ()

self.logger .debug(” Already %d

new_-count = old_count 4+ count

links

from %d to %d” % (old_count , from_id,

to_id))

cursor .execute ("UPDATE links SET count = %s WHERE from_id = %s AND to_id = %s LIMIT 1”7, (
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new_count , from_id, to_id))
self.logger.debug(”Updated to %d links from %d to %d” % (new_count, from-id, to-id))
if not html == None:
cursor .execute ("INSERT INTO page_text (page-id, html) VALUES (%s, %s)”, (page-id, html))
self.logger.debug(” Inserted html”)
if depth < self.max_depth:
self .logger .debug(” Below max depth so queuing new pages”)
for link in unique_links.iterkeys():
try:
self.queue_page(link , depth+1)
except:
self .logger.warn(” Error queueing page %s” % link)
return True
def submit_error(self, url, error):
»»»” Updates the database with the error that occured when processing the page”””
#assert type(url) is str
#assert type(error) is int
cursor = self.get_cursor ()
cursor.execute ("UPDATE pages SET status = %s WHERE url = %s LIMIT 1”, (error, url))
self.logger.debug(”Set error %d for page %s” % (error, url))
return True
LOGGING_LEVELS = {’critical’: logging.CRITICAL,
error ’: logging .ERROR,
>warning’: logging . WARNING,
’info’: logging .INFO,
>debug’: logging .DEBUG}
parser = optparse.OptionParser ()
parser .add-option(’—1’, ’——logging—level’, help='Logging level’)
parser .add_-option(’—a’, ’——bind—address’, type=’str’, default=’localhost’, help=’Address to listen on’)
parser .add_-option(’—p’, ’——bind—port’, type=’int’, default=4242, help='Port to listen on’)
parser .add_-option(’-m’, ’——mysql—address’, type=’str’, default=’localhost’, help="Address of MySQL server’
)

(options , args) = parser.parse_args ()
logging_level =
logging . basicConfig(level=logging_level)
logger = logging .getLogger(’’)
category = args[0]

logger .debug(’Setting up server’)

Pyro.core.initServer ()

daemon=Pyro. core.Daemon( host=options.bind_address,

uri=daemon.connect (WebsterDBServer (host=options

try:

logger.info (” Server is

daemon.requestLoop ()
except KeyboardInterrupt:
logger. is

info(’Server shutting down’)

LOGGING_LEVELS. get (options .logging_level ,

logging .NOTSET)

port=options.bind_port)

.mysql_address , db=category),” webster”)

listening at %s” % uri)



daemon . shutdown (True)
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